

Chapter 15 EQUILIBRIA OF OTHER REACTION CLASSES (SOLUBILITY)

Kevin Kolack, Ph.D. The Cooper Union HW problems: 1, 9, 11, 27, 31, 39, 55

CH. 15 OUTLINE

15.1 Precipitation and Dissolution

SOLUBILITY EQUILIBRIA; FROM K TO KSD $\operatorname{AgCl}(s) \rightleftharpoons \operatorname{Ag^+}(aq) + \operatorname{Cl^-}(aq)$ K_{sp} is the **solubility product constant** $K_{sp} = [Ag^+][Cl^-]$ $MgF_2(s) \rightleftharpoons Mg^{2+}(aq) + 2F^{-}(aq)$ $K_{sp} = [Mg^{2+}][F^{-}]^2$ $K_{sp} = [Ag^+]^2 [CO_3^{2-}]$ $Ag_2CO_3(s) \rightleftharpoons 2Ag^+(aq) + CO_3^{2-}(aq)$ $K_{sp} = [Ca^{2+}]^{5}[PO_{4}^{3-}]^{3}[OH^{-}]$ $Ca_5(PO_4)_3OH(s) \rightleftharpoons 5Ca^{2+}(aq) + 3PO_4^{3-}(aq) + OH^{-}(aq)$

Remember: Q is "K right now"

Dissolution of an ionic solid in aqueous solution:

- $Q < K_{sp}$ Unsaturated solution No precipitate
- $Q = K_{sp}$ Saturated solution
- $Q > K_{sp}$ Supersaturated solution Precipitate will form

SOLUBILITY PRODUCTS

Compound	K _{sp}	Compound	K _{sp}
Aluminum hydroxide [Al(OH)3]	1.8×10^{-33}	Lead(II) chromate (PbCrO ₄)	2.0×10^{-14}
Barium carbonate (BaCO ₃)	8.1×10^{-9}	Lead(II) fluoride (PbF ₂)	4.1×10^{-8}
Barium fluoride (BaF ₂)	1.7×10^{-6}	Lead(II) iodide (PbI ₂)	1.4×10^{-8}
Barium sulfate (BaSO ₄)	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}
Bismuth sulfide (Bi ₂ S ₃)	1.6×10^{-72}	Magnesium carbonate (MgCO ₃)	4.0×10^{-5}
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide [Mg(OH)2]	1.2×10^{-11}
Calcium carbonate (CaCO ₃)	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}
Calcium fluoride (CaF ₂)	4.0×10^{-11}	Mercury(I) chloride (Hg ₂ Cl ₂)	3.5×10^{-18}
Calcium hydroxide [Ca(OH)2]	8.0×10^{-6}	Mercury(II) sulfide (HgS)	4.0×10^{-54}
Calcium phosphate [Ca ₃ (PO ₄) ₂]	1.2×10^{-26}	Nickel(II) sulfide (NiS)	1.4×10^{-24}
Chromium(III) hydroxide [Cr(OH) ₃]	3.0×10^{-29}	Silver bromide (AgBr)	7.7×10^{-13}
Cobalt(II) sulfide (CoS)	4.0×10^{-21}	Silver carbonate (Ag ₂ CO ₃)	8.1×10^{-12}
Copper(I) bromide (CuBr)	4.2×10^{-8}	Silver chloride (AgCl)	1.6×10^{-10}
Copper(I) iodide (CuI)	5.1×10^{-12}	Silver iodide (AgI)	8.3×10^{-17}
Copper(II) hydroxide [Cu(OH) ₂]	2.2×10^{-20}	Silver sulfate (Ag ₂ SO ₄)	1.4×10^{-5}
Copper(II) sulfide (CuS)	6.0×10^{-37}	Silver sulfide (Ag ₂ S)	6.0×10^{-51}
Iron(II) hydroxide [Fe(OH) ₂]	1.6×10^{-14}	Strontium carbonate (SrCO ₃)	1.6×10^{-9}
Iron(III) hydroxide [Fe(OH) ₃]	1.1×10^{-36}	Strontium sulfate (SrSO ₄)	3.8×10^{-7}
Iron(II) sulfide (FeS)	6.0×10^{-19}	Tin(II) sulfide (SnS)	1.0×10^{-26}
Lead(II) carbonate (PbCO ₃)	3.3×10^{-14}	Zinc hydroxide [Zn(OH) ₂]	1.8×10^{-14}
Lead(II) chloride (PbCl ₂)	2.4×10^{-4}	Zinc sulfide (ZnS)	3.0×10^{-23}

SOLUBILITY

- Molar solubility (mol/L) is the number of moles of solute dissolved in 1 L of a saturated solution.
- Solubility (g/L) is the number of grams of solute dissolved in 1 L of a saturated solution *at a specific temperature*.

EXAMPLE

- The solubility of calcium sulfate (CaSO₄) is found to be 0.67 g/L.
- Calculate the value of K_{sp} for calcium sulfate.

SOLUTION

open**stax**"

Solution Consider the dissociation of $CaSO_4$ in water. Let s be the molar solubility (in mol/L) of $CaSO_4$.

CaSO₄(s)
$$\rightleftharpoons$$
 Ca²⁺(aq) + SO₄²⁻(aq)
• Initial (*M*): 0 0
• Change (*M*): -s +s +s
• Equilibrium (*M*): s s

The solubility product for CaSO₄ is

•
$$K_{\rm sp} = [{\rm Ca}^{2+}][{\rm SO}_4^{2-}] = s^2$$

First, we calculate the number of moles of $CaSO_4$ dissolved in 1 L of solution:

$$\frac{0.67 \text{g} \, \text{CaSO}_4}{1 \, \text{L} \, \text{soln}} \times \frac{1 \, \text{mol} \, \text{CaSO}_4}{136.2 \, \text{g} \, \text{CaSO}_4} = 4.9 \times 10^{-3} \, \text{mol/L} = s$$

From the solubility equilibrium we see that for every mole of $CaSO_4$ that dissolves, 1 mole of Ca^{2+} and 1 mole of SO_4^{2-} are produced. Thus, at equilibrium,

$$[Ca^{2+}] = 4.9 \times 10^{-3} M$$
 and $[SO_4^{2-}] = 4.9 \times 10^{-3} M$

Now we can calculate K_{sp} :

 $K_{\rm sp} = [{\rm Ca}^{2+}][{\rm SO}_4^{2-}]$ = $(4.9 \times 10^{-3})(4.9 \times 10^{-3})$

 $= 2.4 \times 10^{-5}$

EXAMPLE

Lead(II) chloride (PbCl₂)

 3.0×10^{-23}

Using the data below, calculate the solubility of copper(II)^{openstax} hydroxide, $Cu(OH)_2$, in g/L.

Copyright @ McGraw-Hill Education: Permission required for reproduction or display

Table 16.2 Solubility Products of S	ome Slightly Solubl	e Ionic Compounds at 25°C	
Compound	K _{sp}	Compound	K _{sp}
Aluminum hydroxide [Al(OH) ₃]	1.8×10^{-33}	Lead(II) chromate (PbCrO ₄)	2.0×10^{-14}
Barium carbonate (BaCO ₃)	8.1×10^{-9}	Lead(II) fluoride (PbF ₂)	4.1×10^{-8}
Barium fluoride (BaF ₂)	1.7×10^{-6}	Lead(II) iodide (PbI ₂)	1.4×10^{-8}
Barium sulfate (BaSO ₄)	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}
Bismuth sulfide (Bi ₂ S ₃)	1.6×10^{-72}	Magnesium carbonate (MgCO ₃)	4.0×10^{-5}
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide [Mg(OH) ₂]	1.2×10^{-11}
Calcium carbonate (CaCO ₃)	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}
Calcium fluoride (CaF ₂)	4.0×10^{-11}	Mercury(I) chloride (Hg ₂ Cl ₂)	3.5×10^{-18}
Calcium hydroxide [Ca(OH)2]	$8.0 imes 10^{-6}$	Mercury(II) sulfide (HgS)	4.0×10^{-54}
Calcium phosphate [Ca ₃ (PO ₄) ₂]	1.2×10^{-26}	Nickel(II) sulfide (NiS)	1.4×10^{-24}
Chromium(III) hydroxide [Cr(OH)3]	3.0×10^{-29}	Silver bromide (AgBr)	7.7×10^{-13}
Cobalt(II) sulfide (CoS)	4.0×10^{-21}	Silver carbonate (Ag ₂ CO ₃)	8.1×10^{-12}
Copper(I) bromide (CuBr)	4.2×10^{-8}	Silver chloride (AgCl)	1.6×10^{-10}
Copper(I) iodide (CuI)	5.1×10^{-12}	Silver iodide (AgI)	8.3×10^{-17}
Copper(II) hydroxide [Cu(OH) ₂]	2.2×10^{-20}	Silver sulfate (Ag ₂ SO ₄)	1.4×10^{-5}
Copper(II) sulfide (CuS)	6.0×10^{-37}	Silver sulfide (Ag ₂ S)	6.0×10^{-51}
Iron(II) hydroxide [Fe(OH) ₂]	$1.6 imes 10^{-14}$	Strontium carbonate (SrCO ₃)	1.6×10^{-9}
Iron(III) hydroxide [Fe(OH) ₃]	1.1×10^{-36}	Strontium sulfate (SrSO ₄)	3.8×10^{-7}
Iron(II) sulfide (FeS)	6.0×10^{-19}	Tin(II) sulfide (SnS)	1.0×10^{-26}
Lead(II) carbonate (PbCO ₃)	3.3×10^{-14}	Zinc hydroxide [Zn(OH) ₂]	1.8×10^{-14}

Zinc sulfide (ZnS)

 2.4×10^{-4}

SOLUTION

Consider the dissociation of $Cu(OH)_2$ in water:

$Cu(OH)_2(s) \rightleftharpoons Cu^{2+}(aq) + 2OH^{-}(aq)$

- Initial (*M*): 0 0
 Change (*M*): -s +s +2s
 Equilibrium (*M*): s 2s
- Note that the molar concentration of OH⁻ is twice that of Cu²⁺. The solubility product of Cu(OH)₂ is

$$K_{\rm sp} = [{\rm Cu}^{2+}][{\rm OH}^{-}]^2 = (s)(2s)^2 = 4s^3$$

From the K_{sp} , we solve for the molar solubility of $Cu(OH)_2$ as follows:

$$2.2 \times 10^{-20} = 4s^3$$

$$s^3 = \frac{2.2 \times 10^{-20}}{4} = 5.5 \times 10^{-21}$$

 $s = 1.8 \times 10^{-7} M$ (so this is the answer if molar solubility was desired)

Finally, from the molar mass of Cu(OH)₂ and its molar solubility, we calculate the solubility in g/L:

• solubility of
$$\operatorname{Cu}(\operatorname{OH})_2 = \frac{1.8 \times 10^{-7} \operatorname{mol} \operatorname{Cu}(\operatorname{OH})_2}{1 \operatorname{L} \operatorname{soln}} \times \frac{97.57 \operatorname{g} \operatorname{Cu}(\operatorname{OH})_2}{1 \operatorname{mol} \operatorname{Cu}(\operatorname{OH})_2}$$

= $\mathbf{1.8} \times \mathbf{10^{-5} g/L}$

RELATIONSHIP OF *K*_{SP} **AND MOLAR SOLUBILITY**

Compound	K _{sp} Expression	Cation	Anion	Relation Between K _{sp} and s
AgCl	[Ag ⁺][Cl ⁻]	\$	S	$K_{\rm sp} = s^2; \ s = (K_{\rm sp})^{\frac{1}{2}}$
BaSO ₄	[Ba ²⁺][SO ₄ ²⁻]	S	S	$K_{\rm sp} = s^2; \ s = (K_{\rm sp})^{\frac{1}{2}}$
Ag ₂ CO ₃	$[Ag^+]^2[CO_3^{2^-}]$	2 <i>s</i>	S	$K_{\rm sp} = 4s^3; \ s = \left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{3}}$
PbF ₂	$[Pb^{2+}][F^{-}]^{2}$	\$	25	$K_{\rm sp} = 4s^3; \ s = \left(\frac{K_{\rm sp}}{4}\right)^{\frac{1}{3}}$
Al(OH) ₃	[Al ³⁺][OH ⁻] ³	\$	35	$K_{\rm sp} = 27s^4; \ s = \left(\frac{K_{\rm sp}}{27}\right)^{\frac{1}{4}}$
Ca ₃ (PO ₄) ₂	$[Ca^{2+}]^3 [PO_4^{3-}]^2$	35	2 <i>s</i>	$K_{\rm sp} = 108s^5; \ s = \left(\frac{K_{\rm sp}}{108}\right)^{\frac{1}{5}}$

PREDICTING PRECIPITATION EXAMPLE

- Exactly 200 mL of 0.0040 M BaCl₂ are mixed with exactly 600 mL of 0.0080 M K₂SO₄.
- Will a precipitate form?

SOLUTION

Strategy

Under what condition will an ionic compound precipitate from solution? The ions in solution are Ba^{2+} , Cl^- , K^+ , and SO_4^{2-} . According to the solubility rules listed in Table 4.2 (p. 125), the only precipitate that can form is $BaSO_4$. From the information given, we can calculate $[Ba^{2+}]$ and $[SO_4^{2-}]$ because we know the number of moles of the ions in the original solutions and the volume of the combined solution. Next, we calculate the ion product $Q(Q = [Ba^{2+}]_0[SO_4^{2-}]_0)$ and compare the value of Q with K_{sp} of $BaSO_4$ to see if a precipitate will form, that is, if the solution is supersaturated.

It is helpful to make a sketch of the situation.

Copyright @ McGraw-Hill Education. Permission required for reproduction or display.

200 mL 600 mL 0.0040 M Ball2 0.0080MK2504 Compare $[Ba^{2+}]_0 = ? + Total volume$ Q with Ksp $[50^{2-}]_0 = ? = ? = 800 \text{ mL}$

open**stax**

Solution

The number of moles of Ba^{2+} present in the original 200 mL of solution is

$$200 \text{ mL} \times \frac{0.0040 \text{ mol Ba}^{2+}}{1 \text{ L soln}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 8.0 \times 10^{-4} \text{ mol Ba}^{2+}$$

The total volume after combining the two solutions is 800 mL. The concentration of Ba^{2+} in the 800 mL volume is

$$[Ba^{2+}] = \frac{8.0 \times 10^{-4} \text{ mol}}{800 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L soln}}$$
$$= 1.0 \times 10^{-3} M$$

The number of moles of SO_4^{2-} in the original 600 mL solution is

$$600 \text{ mL} \times \frac{0.0080 \text{ mol } \text{SO}_4^{2-}}{1 \text{ L soln}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 4.8 \times 10^{-3} \text{ mol } \text{SO}_4^{2-}$$

The concentration of SO_4^{2-} in the 800 mL of the combined solution is

$$[SO_4^{2-}] = \frac{4.8 \times 10^{-3} \text{ mol}}{800 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L soln}}$$
$$= 6.0 \times 10^{-3} M$$

Now we must compare Q and K_{sp} . From Table 16.2,

• $BaSO_4(s) \rightleftharpoons Ba^{2+}(aq) + SO_4^{2-}(aq)$

• $K_{\rm sp} = 1.1 \times 10^{-10}$

- As for Q,
- $Q = [Ba^{2+}]_0 [SO_4^{2-}]_0 = (1.0 \times 10^{-3})(6.0 \times 10^{-3})$
- = 6.0×10^{-6}
- Therefore, $Q > K_{sp}$
- The solution is supersaturated because the value of Q indicates that the concentrations of the ions are too large. Thus, some of the $BaSO_4$ will precipitate out of solution until $[Ba^{2+}][SO_4^{2-}] = 1.1 \times 10^{-10}$
- You could determine the concentration of the remaining ions in solution following precipitation as well. See Example 15.10 on page 851.

FRACTIONAL (SELECTIVE) PRECIPITATION

- We can use varying solubility to selectively precipitate a product (away from an impurity)
- Sometimes called fractional crystallization or simply recrystallization

QUALITATIVE ANALYSIS OF CATIONS

Copyright @ McGraw-Hill Education. Permission required for reproduction or display.

PRECIPITATION REACTIONS WITH VARIOUS CATIONS

Copyright © McGraw-Hill Education. Permission required for reproduction or display.

Separation of Cations into Groups According to Their Precipitation Reactions with Various Reagents

Group	Cation	Precipitating Reagents	Insoluble Compound	K _{sp}
1	Ag ⁺	HCI	AgCl	1.6×10^{-10}
	Hg_{2}^{2+}		Hg ₂ Cl ₂	3.5×10^{-18}
	Pb ²⁺	Ļ	PbCl ₂	2.4×10^{-4}
2	Bi ³⁺	H ₂ S	Bi ₂ S ₃	1.6×10^{-72}
	Cd ²⁺	in acidic	CdS	8.0×10^{-28}
	Cu ²⁺	solutions	CuS	6.0×10^{-37}
	Hg ²⁺		HgS	4.0×10^{-54}
	Sn ²⁺	Ļ	SnS	1.0×10^{-26}
3	Al ³⁺	H ₂ S	Al(OH) ₃	1.8×10^{-33}
	Co ²⁺	in basic	CoS	4.0×10^{-21}
	Cr ³⁺	solutions	Cr(OH) ₃	3.0×10^{-29}
	Fe ²⁺		FeS	$6.0 imes 10^{-19}$
	Mn ²⁺		MnS	3.0×10^{-14}
	Ni ²⁺		NiS	1.4×10^{-24}
Zn ²⁺	Ļ	ZnS	3.0×10^{-23}	
4	Ba ²⁺	Na ₂ CO ₃	BaCO ₃	8.1×10^{-9}
	Ca ²⁺		CaCO ₃	8.7×10^{-9}
	Sr ²⁺		SrCO ₃	1.6×10^{-9}
5	K ⁺	No precipitating	None	
	Na ⁺	reagent	None	
	NH_4^+		None	

COMMON ION EFFECT AND SOLUBILITY

- The presence of a "common ion" decreases the solubility of the salt.
 - Application of LeChatelier's principle

 Example: a source of either Ag⁺ or Br⁻ will decrease the solubility of AgBr

 $\operatorname{AgBr}(s) \rightleftharpoons \operatorname{Ag}^+(aq) + \operatorname{Br}^-(aq)$

EXAMPLE

Calculate the solubility of silver chloride (in g/L) in a $6.5 \times 10^{-3} M$ silver nitrate solution.

SOLUTION

Strategy

This is a common-ion problem. The common ion here is Ag^+ , which is supplied by both AgCl and $AgNO_3$. Remember that the presence of the common ion will affect only the solubility of AgCl (in g/L), but not the K_{sp} value because it is an

equilibrium constant.

Solution

Step 1: The relevant species in solution are Ag^+ ions (from both AgCl and $AgNO_3$) and Cl^- ions. The NO_3^- ions are spectator ions.

Step 2: Because $AgNO_3$ is a soluble strong electrolyte, it dissociates completely:

 $AgNO_{3}(s) \xrightarrow{H_{2}O} Ag^{+}(aq) + NO_{3}^{-}(aq)$ $6.5 \times 10^{-3} M \qquad 6.5 \times 10^{-3} M$

Let s be the molar solubility of AgCl in $AgNO_3$ solution. We summarize the changes in concentrations as follows:

• AgCl(s)
$$\rightleftharpoons$$
 Ag⁺(aq) + Cl⁻(aq)
• Initial (M): 6.5×10^{-3} 0.00
• Change (M): -s +s +s

- $(6.5 \times 10^{-3} + s)$ • Equilibrium (*M*): S
- Step 3:

- $K_{sp} = [Ag^+][Cl^-]$
- $1.6 \times 10^{-10} = (6.5 \times 10^{-3} + s)(s)$

open**stax***

Because AgCl is quite insoluble and the presence of Ag⁺ ions from AgNO₃ further lowers the solubility of AgCl, *s* must be very small compared with 6.5×10^{-3} . Therefore, applying the approximation $6.5 \times 10^{-3} + s \approx 6.5 \times 10^{-3}$, we obtain

• $1.6 \times 10^{-10} = (6.5 \times 10^{-3})s$

•
$$s = 2.5 \times 10^{-8} M$$

• Step 4: At equilibrium

•
$$[Ag^+] = (6.5 \times 10^{-3} + 2.5 \times 10^{-8}) M \approx 6.5 \times 10^{-3} M$$

• $[Cl^+] = 2.5 \times 10^{-8} M$

open**stax**

and so our approximation was justified in step 3. Because all the Cl⁻ ions must come from AgCl, the amount of AgCl dissolved in AgNO₃ solution also is 2.5×10^{-8} *M*.Then, knowing the molar mass of AgCl (143.4 g), we can calculate the solubility of AgCl as follows:

• solubility of AgCl in AgNO₃ solution = $\frac{2.5 \times 10^{-8} \text{ mol AgCl}}{1 \text{ L soln}} \times \frac{143.4 \text{ AgCl}}{1 \text{ mol AgCl}}$

 $= 3.6 \times 10^{-6} \text{ g/L}$

Check

The solubility of AgCl in pure water is 1.9×10^{-3} g/L (see the Practice Exercise in Example 16.9). Therefore, the lower solubility (3.6×10^{-6} g/L) in the presence of AgNO₃ is reasonable. You should also be able to predict the lower

solubility using Le Châtelier's principle. Adding Ag^+ ions shifts the equilibrium to the left, thus decreasing the solubility of AgCl.

pH AND SOLUBILITY

- The presence of a common ion decreases the solubility.
- Insoluble bases dissolve in acidic solutions
- Insoluble acids dissolve in basic solutions

 $Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^{-}(aq)$

$$K_{sp} = [Mg^{2+}][OH^{-}]^{2} = 1.2 \times 10^{-11}$$

$$K_{sp} = (s)(2s)^{2} = 4s^{3}$$

$$4s^{3} = 1.2 \times 10^{-11}$$

$$s = 1.4 \times 10^{-4} M$$

$$[OH^{-}] = 2s = 2.8 \times 10^{-4} M$$

$$POH = 3.55$$

$$PH = 10.45$$

At pH less than 10.45 there's less $[OH^-]$ $OH^-(aq) + H^+(aq) \rightarrow H_2O(l)$ Increase solubility of Mg(OH)₂ At pH greater than 10.45 Raise $[OH^-]$ Decrease solubility of Mg(OH)₂

EXAMPLE

Which of the following compounds will be more soluble in acidic solution than in water:

(a)CuS

(b) AgCl

(c) PbSO₄

SOLUTION

Strategy

In each case, write the dissociation reaction of the salt into its cation and anion. The cation will not interact with the H^+ ion because they both bear positive charges. The anion will act as a proton acceptor only if it is the conjugate base of a

weak acid. How would the removal of the anion affect the solubility of the salt?

Solution

(a) The solubility equilibrium for CuS is

$$CuS(s) \rightleftharpoons Cu^{2+}(aq) + S^{2-}(aq)$$

The sulfide ion is the conjugate base of the weak acid HS^- . Therefore, the S^{2-} ion reacts with the H^+ ion as follows:

 $S^{2-}(aq) + H^+(aq) \rightarrow HS^-(aq)$

This reaction removes the S^{2-} ions from solution. According to Le Châtelier's principle, the equilibrium will shift to the right to replace some of the S^{2-} ions that were removed, thereby increasing the solubility of CuS.

(b) The solubility equilibrium is

```
\operatorname{AgCl}(s) \rightleftharpoons \operatorname{Ag}^+(aq) + \operatorname{Cl}^-(aq)
```

Because Cl^- is the conjugate base of a strong acid (HCl), the solubility of AgCl is not affected by an acid solution.

(c) The solubility equilibrium for PbSO₄ is

$$PbSO_4(s) \rightleftharpoons Pb^{2+}(aq) + SO_4^{2-}(aq)$$

The sulfate ion is a weak base because it is the conjugate base of the weak acid HSO_4^- . Therefore, the ion reacts with the H^+ ion as follows:

$$SO_4^{2-}(aq) + H^+(aq) \rightarrow HSO_4^-(aq)$$

This reaction removes the SO_4^{2-} ions from solution. According to Le Châtelier's principle, the equilibrium will shift to the right to replace some of the SO_4^{2-} ions that were removed, thereby increasing the solubility of PbSO₄.

EXAMPLE

Calculate the concentration of aqueous ammonia necessary to initiate the precipitation of iron(II) hydroxide from a 0.0030 M solution of FeCl₂.

SOLUTION

Strategy

For iron(II) hydroxide to precipitate from solution, the product $[Fe^{2+}][OH^{-}]^2$ must be greater than its K_{sp} . First, we calculate $[OH^{-}]$ from the known $[Fe^{2+}]$ and the K_{sp} value listed in Table 16.2. This is the concentration of OH^{-} in a saturated solution of $Fe(OH)_2$. Next, we calculate the concentration of NH_3 that will supply this concentration of OH^{-} ions. Finally, any NH_3 concentration greater than the calculated value will initiate the precipitation of $Fe(OH)_2$ because the solution will become supersaturated.

Solution

Ammonia reacts with water to produce OH^- ions, which then react with Fe^{2+} to form $Fe(OH)_2$. The equilibria of interest are

$$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$$
$$Fe^{2+}(aq) + 2OH^-(aq) \rightleftharpoons Fe(OH)_2(s)$$

First we find the OH^- concentration above which $Fe(OH)_2$ begins to precipitate. We write

•
$$K_{\rm sp} = [{\rm Fe}^{2+}][{\rm OH}^{-}]^2 = 1.6 \ge 10^{-14}$$

Because $FeCl_2$ is a strong electrolyte, $[Fe^{2-}] = 0.0030 M$ and

$$[OH^{-}]^{2} = \frac{1.6 \times 10^{-14}}{0.0030} = 5.3 \times 10^{-12}$$
$$[OH^{-}] = 2.3 \times 10^{-6} M$$

Next, we calculate the concentration of NH₃ that will supply $2.3 \times 10^{-6} M \text{ OH}^-$ ions. Let *x* be the initial concentration of NH₃ in mol/L.

We summarize the changes in concentrations resulting from the ionization of NH_3 as follows.

	$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$		
Initial (<i>M</i>):	x	0.00	0.00
Change (M):	-2.3×10^{-6}	$+2.3 \times 10^{-6}$	$+2.3 \times 10^{-6}$
Equilibrium (<i>M</i>):	$(x - 2.3 \times 10^{-6})$	2.3×10^{-6}	2.3×10^{-6}

Next, substitute the equilibrium concentrations in the expression for the ionization constant.

$$K_{\rm b} = \frac{[\rm NH_4^+][\rm OH^-]}{[\rm NH_3]}$$
$$\times 10^{-5} = \frac{(2.3 \times 10^{-6})(2.3 \times 10^{-6})}{(2.3 \times 10^{-6})(2.3 \times 10^{-6})}$$

$$1.8 \times 10^{-5} = \frac{x}{(x - 2.3 \times 10^{-6})}$$

• Solving for *x*, we obtain

•
$$x = 2.6 \times 10^{-6} M$$

• Therefore, the concentration of NH_3 must be slightly greater than 2.6 × 10^{-6} M to initiate the precipitation of $Fe(OH)_2$.

EFFECT OF COMPLEXATION ON SOLUBILITY

Copyright © McGraw Hill Education. Permission required for reproduction or display.

© McGraw-Hill Higher Education Inc./Ken Karp, Photographer

Chapter 15 Equilibria of Other Reaction Classes (solubility)

HW problems: 1, 9, 11, 27, 31, 39, 55

This file is copyright 2017, Rice University, and adapted by Kevin Kolack, Ph.D. All Rights Reserved.