

Chapter 15 EQUILIBRIA OF OTHER REACTION CLASSES (SOLUBILITY)

Kevin Kolack, Ph.D. The Cooper Union HW problems: 1, 9, 11, 27, 31, 39, 55

CH. 15 OUTLINE

• 15.1 Precipitation and Dissolution

SOLUBILITY EQUILIBRIA; FROM K TO Kep $AgCl(s) \rightleftarrows Ag^+(aq) + Cl^-(aq)$ $K_{sp} = [Ag^+] [Cl^-]$ K_{sp} is the **solubility product constant** $MgF_2(s) \rightleftarrows Mg^{2+}(aq) + 2F^-(aq)$ $-(aq)$ $K_{sp} = [Mg^{2+}][F^-]^2$ $Ag_2CO_3(s) \rightleftarrows 2Ag^+(aq) + CO_3^{2-}(aq)$ $K_{sp} = [Ag^+]^2 [CO_3^{2-}]$ $\text{Ca}_{5}(\text{PO}_{4})_{3}\text{OH}(s) \rightleftharpoons 5\text{Ca}^{2+}(aq) + 3\text{PO}_{4}^{3-}(aq) + \text{OH}^{-}$ $(K_{sp} = [Ca^{2+}]^5 [PO_4^{3-}]^3 [OH^-]$

Remember: Q is "K right now"

Dissolution of an ionic solid in aqueous solution:

- $Q < K_{sp}$ Unsaturated solution No precipitate
- $Q = K_{sp}$ Saturated solution
- $Q > K_{sp}$ Supersaturated solution Precipitate will form

SOLUBILITY PRODUCTS

SOLUBILITY

- Molar solubility (mol/L) is the number of moles of solute dissolved in 1 L of a saturated solution.
- Solubility (g/L) is the number of grams of solute dissolved in 1 L of a saturated solution at a specific temperature.

EXAMPLE

- The solubility of calcium sulfate $(CaSO₄)$ is found to be 0.67 g/L.
- Calculate the value of K_{sp} for calcium sulfate.

SOLUTION

opens

Solution Consider the dissociation of CaSO₄ in water. Let *s* be the molar solubility (in mol/L) of $CaSO₄$.

11.
$$
CasO_4(s) \rightleftharpoons Ca^{2+}(aq) + SO_4^{2-}(aq)
$$

\n• Change (M):

\n• Squilibrium (M):

\n• Squilibrium (M):

• The solubility product for $CaSO₄$ is

$$
K_{\text{sp}} = \text{[Ca}^{2+}\text{][SO}_4^{2-}\text{]} = s^2
$$

First, we calculate the number of moles of $CaSO₄$ dissolved in 1 L of solution:

$$
\frac{0.67g \text{ CaSO}_4}{1 \text{ L soln}} \times \frac{1 \text{ mol } \text{CaSO}_4}{136.2 g \text{ GaSO}_4} = 4.9 \times 10^{-3} \text{ mol/L} = s
$$

From the solubility equilibrium we see that for every mole of $CaSO₄$ that dissolves, 1 mole of Ca²⁺ and 1 mole of SO_4^{2-} are produced. Thus, at equilibrium,

$$
[Ca^{2+}] = 4.9 \times 10^{-3} M \text{ and } [SO_4^{2-}] = 4.9 \times 10^{-3} M
$$

Now we can calculate K_{sp} :

- $K_{\text{sp}} = [Ca^{2+}][SO_4^{2-}]$ $= (4.9 \times 10^{-3})(4.9 \times 10^{-3})$
	- $= 2.4 \times 10^{-5}$

EXAMPLE

Using the data below, calculate the solubility of copper(II)^{opensta} hydroxide, $Cu(OH)_2$, in g/L .

Copyright @ McGraw-Hill Education: Permission required for reproduction or display

SOLUTION

Consider the dissociation of $Cu(OH)₂$ in water:

$Cu(OH)_{2}(s) \rightleftharpoons Cu^{2+}(aq) + 2OH^{-}(aq)$

- Initial (*M*): 0 0 • Change (*M*): *-s +s +*2*s* • Equilibrium (*M*): *s 2s*
- Note that the molar concentration of OH⁻ is twice that of Cu^{2+} . The solubility product of $Cu(OH)_2$ is

$$
K_{\rm sp} = \left[{\rm Cu^{2+}}\right][\rm OH^{-}]^{2} = (s)(2s)^{2} = 4s^{3}
$$

From the K_{sp} , we solve for the molar solubility of $Cu(OH)_2$ as follows:

$$
2.2 \times 10^{-20} = 4s^3
$$

$$
s^3 = \frac{2.2 \times 10^{-20}}{4} = 5.5 \times 10^{-21}
$$

 $s = 1.8 \times 10^{-7}$ *M* (so this is the answer if molar solubility was desired)

• Finally, from the molar mass of $Cu(OH)_2$ and its molar solubility, we calculate the solubility in g/L :

• solubility of Cu(OH)₂ =
$$
\frac{1.8 \times 10^{-7} \text{mol} \cdot \text{Cu(OH)}_2}{1 \text{L} \cdot \text{soln}} \times \frac{97.57 \text{g} \cdot \text{Cu(OH)}_2}{1 \text{mol} \cdot \text{Cu(OH)}_2}
$$

$$
= 1.8 \times 10^{-5} \text{ g/L}
$$

RELATIONSHIP OF K_{SP} AND MOLAR SOLUBILITY

PREDICTING PRECIPITATION EXAMPLE

- Exactly 200 mL of 0.0040 M BaCl₂ are mixed with exactly 600 mL of 0.0080 M $\mathrm{K}_2\mathrm{SO}_4$.
- Will a precipitate form?

SOLUTION

Strategy

Under what condition will an ionic compound precipitate from solution? The ions in solution are Ba^{2+} , Cl⁻, K⁺, and SO²⁻. According to the solubility rules listed in Table 4.2 (p. 125), the only precipitate that can form is $BaSO₄$. From the information given, we can calculate [Ba²⁺] and [SO $^{2-}_{4}$] because we know the number of moles of the ions in the original solutions and the volume of the combined solution. Next, we calculate the ion product $Q(Q =$ Ba^{2+}]₀[SO₄²-]₀) and compare the value of *Q* with K_{sp} of BaSO₄ to see if a precipitate will form, that is, if the solution is supersaturated.

It is helpful to make a sketch of the situation.

Copyright @ McGraw-Hill Education. Permission required for reproduction or display.

200 mL 600 m.L O.0040MBaCl2 0.0080MK2504 Compane $EBa^{2+}J_0 = ?$ Total volume
 Q with K_{sp} $\begin{bmatrix} 50^{2-}J_0 = ? \\ 150^{2-}J_0 = ? \end{bmatrix} = 800$ mL

Solution

The number of moles of Ba^{2+} present in the original 200 mL of solution is

$$
200 \text{ mL} \times \frac{0.0040 \text{ mol Ba}^{2+}}{1 \text{ L soln}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 8.0 \times 10^{-4} \text{ mol Ba}^{2+}
$$

The total volume after combining the two solutions is 800 mL. The concentration of Ba^{2+} in the 800 mL volume is

$$
[\text{Ba}^{2+}] = \frac{8.0 \times 10^{-4} \text{ mol}}{800 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L soln}}
$$

$$
= 1.0 \times 10^{-3} M
$$

The number of moles of SO_4^{2-} in the original 600 mL solution is

$$
600 \text{ mL} \times \frac{0.0080 \text{ mol } \text{SO}_4^{2-}}{1 \text{ L soln}} \times \frac{1 \text{ L}}{1000 \text{ mL}} = 4.8 \times 10^{-3} \text{ mol } \text{SO}_4^{2-}
$$

The concentration of SO_4^{2-} in the 800 mL of the combined solution is

$$
[SO_4^{2-}] = \frac{4.8 \times 10^{-3} \text{ mol}}{800 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L soln}}
$$

$$
= 6.0 \times 10^{-3} M
$$

Now we must compare Q and K_{sp} . From Table 16.2,

• BaSO₄(s) \Rightarrow Ba²⁺(aq) + SO₄⁻(aq)

• $K_{\text{sp}} = 1.1 \times 10^{-10}$

- As for *Q*,
- $Q = [Ba^{2+}]_0 [SO_4^{2-}]_0 = (1.0 \times 10^{-3})(6.0 \times 10^{-3})$
- $= 6.0 \times 10^{-6}$
- Therefore, $Q > K_{SD}$
- The solution is supersaturated because the value of *Q* indicates that the concentrations of the ions are too large. Thus, some of the $BaSO₄$ will precipitate out of solution until $[Ba^{2+}][SO_4^{2-}] = 1.1 \times 10^{-10}$
- You could determine the concentration of the remaining ions in solution following precipitation as well. See Example 15.10 on page 851.

FRACTIONAL (SELECTIVE) PRECIPITATION

- We can use varying solubility to selectively precipitate a product (away from an impurity)
- Sometimes called fractional crystallization or simply recrystallization

QUALITATIVE ANALYSIS OF CATION

Copyright @ McGraw-Hill Education. Permission required for reproduction or display.

PRECIPITATION REACTIONS WITH VARIOUS CATIONS

Separation of Cations into Groups According to Their Precipitation Reactions **Table 16.5** with Various Reagents

COMMON ION EFFECT AND SOLUBILITY

- The presence of a "common ion" decreases the solubility of the salt.
	- Application of LeChatelier's principle

• Example: a source of either Ag⁺ or Br will decrease the solubility of AgBr

 $AgBr(s) \rightleftharpoons Ag^+(aq) + Br^-(aq)$

EXAMPLE

Calculate the solubility of silver chloride (in g/L) in a 6.5 × 10⁻³ M silver nitrate solution.

SOLUTION

Strategy

This is a common-ion problem. The common ion here is Ag^+ , which is supplied by both AgCl and $AgNO₃$. Remember that the presence of the common ion will affect only the solubility of AgCl (in g/L), but not the K_{sp} value because it is an

equilibrium constant.

Solution

Step 1: The relevant species in solution are Ag⁺ ions (from both AgCl and AgNO₃) and Cl[−] ions. The NO₃ ions are spectator ions.

Step 2: Because AgNO₃ is a soluble strong electrolyte, it dissociates completely:

> $AgNO₃(s$ $H₂O$ $Ag^+(aq) + NO_3^-(aq)$ 6.5×10^{-3} M 6.5×10^{-3} M

opens

Let *s* be the molar solubility of AgCl in $AgNO₃$ solution. We summarize the changes in concentrations as follows:

• AgCl(s)
$$
\Rightarrow
$$
 Ag⁺(aq) + Cl⁻(aq)
\n• Initial (*M*):
\n• Change (*M*):
\n• $-s$ +s +s

- Equilibrium (*M*): $(6.5 \times 10^{-3} + s)$ *s*
- *Step 3:*
- $K_{\text{sp}} = [Ag^+][Cl^-]$
- 1.6 \times 10⁻¹⁰ = (6.5 \times 10⁻³ + s)(s)

Because AgCl is quite insoluble and the presence of $Ag⁺$ ions from $AgNO₃$ further lowers the solubility of AgCl, *s* must be very small compared with 6.5×10^{-3} . Therefore, applying the approximation $6.5 \times 10^{-3} + s \approx 6.5 \times 10^{-3}$ 10⁻³, we obtain

• 1.6 × 10⁻¹⁰ = $(6.5 \times 10^{-3})s$

$$
\bullet \, s = 2.5 \times 10^{-8} \, M
$$

• *Step 4:* At equilibrium

$$
[Ag^{+}] = (6.5 \times 10^{-3} + 2.5 \times 10^{-8}) M \approx 6.5 \times 10^{-3} M
$$

$$
[Cl^{+}] = 2.5 \times 10^{-8} M
$$

and so our approximation was justified in step 3. Because all the Cl[−] ions must come from AgCl, the amount of AgCl dissolved in $AgNO₃$ solution also is 2.5×10^{-8} *M*. Then, knowing the molar mass of AgCl (143.4 g), we can calculate the solubility of AgCl as follows:

• solubility of AgCl in $AgNO₃$ solution = 2.5×10−8 mol AgCl $\frac{0}{1}$ L soln \times 143.4 AgCl 1 mol AgCl

 $= 3.6 \times 10^{-6}$ g/L

Check

The solubility of AgCl in pure water is 1.9×10^{-3} g/L (see the Practice Exercise in Example 16.9). Therefore, the lower solubility (3.6 \times 10⁻⁶ g/L) in the presence of $AgNO₃$ is reasonable. You should also be able to predict the lower

solubility using Le Châtelier's principle. Adding $Ag⁺$ ions shifts the equilibrium to the left, thus decreasing the solubility of AgCl.

AND SOLUBILITY

- The presence of a common ion **decreases** the solubility.
- Insoluble bases dissolve in acidic solutions
- Insoluble acids dissolve in basic solutions

 $Mg(OH)_{2}(s) \rightleftarrows Mg^{2+}(aq) + 2OH^{-}(aq)$

$$
K_{sp} = [Mg^{2+}][OH^{-}]^{2} = 1.2 \times 10^{-11}
$$

\n
$$
K_{sp} = (s)(2s)^{2} = 4s^{3}
$$

\n
$$
4s^{3} = 1.2 \times 10^{-11}
$$

\n
$$
s = 1.4 \times 10^{-4} M
$$

\n
$$
[OH^{-}] = 2s = 2.8 \times 10^{-4} M
$$

\n
$$
pOH = 3.55
$$

\n
$$
pH = 10.45
$$

\n
$$
A
$$

 α t pH less than 10.45 there′ s less [OH−] $OH^{-}(aq) + H^{+}(aq) \rightarrow H_{2}O (l)$ ncrease solubility of Mg(OH)₂ α t pH greater than 10.45 Raise [OH−] Decrease solubility of $Mg(OH)_2$

EXAMPLE

Which of the following compounds will be more soluble in acidic solution than in water:

(a)CuS

(b) AgCl

(c) $PbSO_4$

SOLUTION

Strategy

In each case, write the dissociation reaction of the salt into its cation and anion. The cation will not interact with the H^+ ion because they both bear positive charges. The anion will act as a proton acceptor only if it is the conjugate base of a

weak acid. How would the removal of the anion affect the solubility of the salt?

Solution

(a) The solubility equilibrium for CuS is

$$
CuS(s) \rightleftharpoons Cu^{2+}(aq) + S^{2-}(aq)
$$

The sulfide ion is the conjugate base of the weak acid HS[−]. Therefore, the S^{2-} ion reacts with the H^+ ion as follows:

 $S^{2-}(aq) + H^{+}(aq) \rightarrow HS^{-}(aq)$

This reaction removes the S^{2-} ions from solution. According to Le Châtelier's principle, the equilibrium will shift to the right to replace some of the S^{2-} ions that were removed, thereby increasing the solubility of CuS.

(b) The solubility equilibrium is

```
AgCl(s) \Rightarrow Ag<sup>+</sup>(aq) + Cl<sup>-</sup>(aq)
```
Because Cl[−] is the conjugate base of a strong acid (HCl), the solubility of AgCl is not affected by an acid solution.

(c) The solubility equilibrium for $PbSO₄$ is

$$
PbSO_4(s) \rightleftharpoons Pb^{2+}(aq) + SO_4^{2-}(aq)
$$

The sulfate ion is a weak base because it is the conjugate base of the weak acid HSO_4^- . Therefore, the ion reacts with the H⁺ ion as follows:

$$
SO_4^{2-}(aq) + H^+(aq) \rightarrow HSO_4^-(aq)
$$

This reaction removes the SO_4^{2-} ions from solution. According to Le Châtelier's principle, the equilibrium will shift to the right to replace some of the SO_4^{2-} ions that were removed, thereby increasing the solubility of $PbSO₄$.

EXAMPLE

Calculate the concentration of aqueous ammonia necessary to initiate the precipitation of iron(II) hydroxide from a 0.0030 *M* solution of FeCl₂.

SOLUTION

Strategy

For iron(II) hydroxide to precipitate from solution, the product $[Fe²⁺][OH⁻]²$ must be greater than its K_{sp} . First, we calculate $[OH⁻]$ from the known $[Fe^{2+}]$ and the K_{sp} value listed in Table 16.2. This is the concentration of OH⁻ in a saturated solution of $Fe(OH)_2$. Next, we calculate the concentration of NH₃ that will supply this concentration of OH⁻ ions. Finally, any $NH₃$ concentration greater than the calculated value will initiate the precipitation of $Fe(OH)_2$ because the solution will become supersaturated.

Solution

Ammonia reacts with water to produce OH^- ions, which then react with Fe^{2+} to form $Fe(OH)_2$. The equilibria of interest are

$$
NH3(aq) + H2O(l) \rightleftharpoons NH4+(aq) + OH-(aq)
$$

Fe²⁺(aq) + 2OH⁻(aq) \rightleftharpoons Fe(OH)₂(s)

First we find the OH⁻ concentration above which $Fe(OH)_2$ begins to precipitate. We write

•
$$
K_{\text{sp}} = \text{[Fe}^{2+}\text{][OH}^{-}\text{]}^{2} = 1.6 \times 10^{-14}
$$

Because FeCl₂ is a strong electrolyte, $[Fe^{2-}] = 0.0030 M$ and

$$
[OH^-]^2 = \frac{1.6 \times 10^{-14}}{0.0030} = 5.3 \times 10^{-12}
$$

$$
[OH^-] = 2.3 \times 10^{-6} M
$$

Next, we calculate the concentration of $NH₃$ that will supply 2.3×10^{-6} M OH⁻ ions. Let x be the initial concentration of NH₃ in mol/L.

We summarize the changes in concentrations resulting from the ionization of $NH₃$ as follows.

Next, substitute the equilibrium concentrations in the expression for the ionization constant.

$$
K_{\rm b} = \frac{\text{[NH_4^+][OH^-]}}{\text{[NH_3]}}
$$

(2.3 × 10⁻⁶)(2.3 × 10⁻⁶)

$$
1.8 \times 10^{-5} = \frac{(2.5 \times 10^{-9})(2.5 \times 10^{-6})}{(x - 2.3 \times 10^{-6})}
$$

• Solving for *x*, we obtain

$$
\bullet \ \ x = 2.6 \times 10^{-6} \ M
$$

• Therefore, the concentration of $NH₃$ must be slightly greater than 2.6 \times 10^{-6} *M* to initiate the precipitation of Fe(OH)₂.

EFFECT OF COMPLEXATION ON SOLU

 $AgNO₃ + NaCl$

Copyright © McGraw Hill Education. Permission required for repoduction or display.

© McGraw-Hill Higher Education Inc./Ken Karp, Photographer

Chapter 15 Equilibria of Other Reaction Classes (solubility)

HW problems: 1, 9, 11, 27, 31, 39, 55

This file is copyright 2017, Rice University, and adapted by Kevin Kolack, Ph.D. All Rights Reserved.